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Introduction and Background 

The primary site of ethanol metabolism is in the liver. When ethanol is ingested, it is rapidly absorbed 

into the bloodstream through capillaries in the stomach and small intestines. Veins carry the ethanol to 

the liver through which it is perfused and metabolized. Ethanol is converted into acetaldehyde via 

alcohol dehydrogenase, catalase, and CYP2E1 enzymes, and from acetaldehyde into acetate via 

aldehyde dehydrogenases which is then removed from the body.1,2 

The amount of alcohol in an individual’s system is measured by the percent by volume of ethanol in the 

blood, called the blood alcohol concentration (BAC). The amount of ethanol in the blood for a given 

quantity of ingested alcohol varies widely from person to person and depends on an individual’s 

absorption, distribution, metabolism, and excretion rates. These rates in turn are influenced by factors 

such as age, sex, genetics, fasting or fed state, type of alcohol, rate and frequency of alcohol 

consumption, and even time of day. However, a session of moderate alcohol consumption will typically 

result in a BAC within the range of 0.046-0.092, or about 10-20 mM. This ethanol is circulated 

throughout the body, eventually passing through the liver via the portal veins.1 

The liver is made up of 1-1.5 million functional units called hepatic lobules. In cross-section, hepatic 

lobules are multicellular structures of hexagonal shape centered about a central vein and bordered at six 

corners by portal triads (see Figure 1). Each lobule is composed of the metabolically active liver cells 

called hepatocytes between which run endothelial cell-lined channels called sinusoids. Blood from the 

portal veins and hepatic arteries within the portal triads perfuse from the outer edge of each lobule 

through the sinusoids, passing by the metabolically active hepatocytes, and drain into the central vein.2 

 

Figure 1 Schematic of the hepatic lobule. (Copyright © 2004 Pearson Education) 
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Model and Assumptions 

To study the alcohol concentration within the hepatic lobule, we approximated its geometry as a hollow 

cylinder (Figure 2a). The inner radius R1 represents the radius of the central vein which is 100 μm. The 

outer radius R2 represents the radius of the entire lobule. With an average lobule thickness from the 

central to the portal veins of about 15 hepatocytes, each 50 μm in diameter, giving a cylinder thickness 

of 750 μm. Factoring in the radius of the central vein, this gives a total lobule radius R2 of 850 μm.3 

With this cylindrical geometry, we simplified the ethanol-rich blood entering the lobule from each of the 

six portal triads by setting a constant value ethanol concentration of 20 mM at the boundary R2. 

Although in the body ethanol concentration is not constant over time, we will only be looking at the 

model in a time period of a few minutes, thus making this is a reasonable approximation. Inside, at the 

edge of the central vein (boundary R1), we set the alcohol concentration to be 0 mM, assuming that the 

central vein quickly carries away any un-metabolized ethanol maintaining an ethanol free boundary. 

Additionally, we set the initial concentration of ethanol within the hepatic lobule at 0 mM throughout to 

simulate an ethanol-free initial condition. 

Furthermore, we assumed radial symmetry (i.e. the same ethanol concentration profile for all θ) within 

the lobule, and that the blood alcohol concentration along the lobule’s central axis (in the z-direction) is 

uniform. Therefore, the concentration of ethanol in the lobule depends only on the radius and time, 

reducing our model to a 2D polar coordinate approximation (Figure 2b). 

 

Figure 2: Geometry of the mathematical model of the hepatic lobule. a. 3D hollow cylinder approximation of a 

single hepatic lobule. b. Simplified 2D model of hepatic lobule including value boundary conditions for ethanol 

concentration assuming radial symmetry and uniform concentration in the z-direction. 
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Because blood is continuously flowing into the lobule (from R2 to R1) through sinusoids and diffuses 

readily across tissues, the concentration of ethanol will depend both on convection and diffusion. 

Convection was approximated by assuming a constant blood velocity of 0.21 mm/s, which is the average 

velocity previously measured in rats by tracking erythrocyte flow through the sinusoids.4 Although radial 

convection is proportional to 1/r, we chose to make it constant for simplicity. Due to ethanol molecules’ 

rapid diffusion through tissues, the diffusivity of ethanol was approximated to be that of ethanol in 

water: 1.23 x 10-9 m2/s.5 

To account for the actual metabolism of ethanol by the hepatocytes in the lobule, we introduced a 

concentration-dependent consumption rate modeled with Michaelis-Menton kinetics. While the liver 

employs a variety of different enzymes in ethanol metabolism, we chose to focus on the most abundant 

liver-specific alcohol dehydrogenase isozyme ADH1A, which has a Michaelis constant Km of 4 mM and a 

maximum reaction velocity Vmax of 0.5 mM/min.1 The enzyme is assumed to be distributed evenly 

throughout the hepatic lobule, though it is actually located within the cytosol of the hepatocytes.1 

The concentration of ethanol within the hepatic lobule can be described by the conservation relations 
equation for dilute solutions6 as follows: 
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where C is the concentration of ethanol, t the is time, r is the radius, vr is the blood velocity through the 

sinusoids, D is the diffusivity of ethanol, Vm is the Vmax or maximum reaction rate of ADH1A, and Km is the 

Michaelis constant for ADH1A. Note that the terms in the equation describing concentration changes in 

the θ and z directions equal zero since the concentration C is assumed to depend only on radius r and 

time t. Table 1 below summarizes our model’s parameters, initial conditions, and boundary conditions. 

Parameter Description Value 

R1 Radius of central vein 100 μm 

R2 Radius of hepatic lobule 850 μm 

C(R1,t) Zero value ethanol concentration BC at R1 0 mM 

C(R2,t) Value ethanol concentration BC at R2 20 mM 

C(r,0) Zero value ethanol concentration IC 0 mM 

D Diffusivity of ethanol through water (STP)                   

   Michaelis constant of ADH1 4 mM 

     Maximum reaction velocity of ADH1 0.5 mM/s 

   Inward radial convective flow velocity 0.21 mm/s 

Table 1: Summary of model parameters, initial conditions, and boundary conditions. 

Convection Diffusion Consumption 
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Solution of Complete Model (with Convection with Consumption) 
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Because of the complexity of the partial differential equation with a nonlinear consumption term and 

the additional convection term, we could only find the solution using numerical methods. We chose to 

use finite differences8 because the PDEPE function in MATLAB7 cannot be used to solve nonlinear partial 

differential equations. The finite differences code can be found in Appendix B. 

When using the physiological average velocity of 0.21 mm/s, the concentration in the sinusoid quickly 

reached close to the maximum concentration set at the outer boundary (Figure 3). The only factors 

preventing the entire ethanol concentration profile from being a uniform 20 mM is the zero-value inner 

boundary condition at R1 as well as the consumption term. However, it is obvious in this case that the 

contribution from convection is much more significant in our model. 

 
Figure 3. Numerical Solution of Complete Equation (Convection vr = -2.1 x 10

-4
 m/s) 
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Figure 4. Numerical Solution of Complete Equation (Convection vr = -1.7 x 10

-6
 m/s) 

 
In order to better visualize the added effect of convection without it dominating the other terms in our 
partial differential equation, we decreased the flow rate and again plotted the numerical solution 
(Figure 4). Note that this eliminates the dominating 20 mM plateau region in Figure 3. By comparing 
steady state solutions with the solution to the equation without convection or consumption, it is 
apparent that convection increases the concentration near the inner radius R1 because the flow is 
pushing the higher concentration on the outside radius R2 towards the central vein (Figure 5). 
 

 
Figure 5. Comparing Steady State of Complete Model (with Convection with Consumption) shown  

in blue vs. Simplified Model (without Convection without Consumption) shown in green. 
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Solution of Simplified model (without Convection BUT with Consumption) 
 
Disregarding our convection term, our partial differential equation reduces to: 
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Figure 6: Numerical Solution of Simplified Model (without Convection BUT with Consumption) 

 
To isolate the effect of consumption, we also found the numerical solution to the PDE without the 
convection term. By comparing it with the same steady state without convection or consumption, we 
can see the effect of consumption in Figure 7. The difference between the solutions is greatest near the 
outer boundary because that is where the concentration is highest. Because Michaelis-Menten enzyme 
kinetics dictate that the catalytic rate is higher at higher substrate conversations, it is in this area where 
consumption has a greater effect. 
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Figure 7: Comparing Effect of Consumption. Model without Consumption solved analytically 

and model with Consumption solved numerically. Neither has convection included. 

 
Solution of Simplified Model (without Convection without Consumption) 
 
In our most simplified case which disregards both convection and consumption: 
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By simplifying the model further to get rid of convection and consumption, we finally arrive at an 
equation we can solve analytically (see Appendix A). Because the equation does not have homogeneous 
boundary conditions we had to “extract the poison tooth”, resulting in a solution described by the sum 
of the steady state solution and the solution to the homogeneous boundary problem. To solve the 
homogeneous boundary problem, we used separation of variables that left us with a familiar time 
dependent exponential solution and a space dependent term the solution to which consisted of Bessel 
functions because of the cylindrical coordinates. Unfortunately because our cylinder boundaries do not 
include the axial center, the Bessel functions of the second kind do not blow up to infinity so we cannot 
disregard them in our solution.  Therefore, our solution is in the form of a steady state solution added to 
an infinite series of two kinds of Bessel functions. We plotted the approximate analytical solution using 5 
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and 8 roots. As can be seen in Figures 8 and 9, an increasing number of terms results in a smoother, 
more accurate the solution, especially at early time points. 

 
Figure 8: Analytical Solution of Simplified Model (without Convection 

without Consumption) approximated with first 5 roots 

 

 
Figure 9: Analytical Solution of Simplified Model (without Convection  

without Consumption) approximated with first 8 roots 
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Figure 10: Comparing Steady States of Simplified Model solved with Numerical vs. Analytical methods 

 

To verify our solutions, we plotted and compared the numerically and analytically derived steady states 
(Figures 10 & 11). While the match is not perfect, the general behavior is very close and distinct from 
the solutions when convection and consumption are added in. The difference in solutions can be 
accounted for by the approximating nature of the numerical methods and reminds us that numerically 
derived solutions are not exact. In the future, using smaller step sizes may help improve accuracy. 
 

 
Figure 11: Numerical Solution of Simplified Model (without Convection without Consumption) 
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Conclusions 

Our model sought to evaluate the ethanol concentration in the human hepatic lobule during first-pass 

ethanol metabolism. We were able to formulate and solve a partial differential equation with diffusive, 

convective, and consumptive terms using a number of assumptions for both the geometry and boundary 

conditions. Three different scenarios were modeled in order to observe how each term in our model 

affected the metabolism of ethanol in the hepatic lobule system. 

Using a convective flow velocity of 0.21mm/s, we observed that the majority of the lobule remained at 

the maximum concentration of 20mM. This indicates that convection was the main force of ethanol 

movement, dominating both the diffusion and consumption factors in our overall equation. However, 

we know from the literature that distinct gradients of metabolites form within the hepatic lobule1,2. This 

suggests that convection in our system represents an inaccurate representation of the natural 

physiology. This is not surprising considering the complex microarchitecture and non-uniform blood flow 

through the sinusoids. 

In order to better observe the effects of both diffusion and consumption in our model, we greatly 

reduced the velocity of blood so that the convective term did not dominate the overall model. This 

allowed us to observe the concentration-dependent nature of our consumption term. By eliminating 

convection altogether, the Michaelis-Menten kinetics of ADH1A is even more apparent when compared 

to the analytical solution, which only considers diffusion. We find that the activity of ADH1A is highest at 

the outer boundary of    due to the higher concentration of ethanol at this boundary. 

In order to solve the partial differential equation analytically, the original partial differential equation 

was further simplified so that only diffusion in the r direction was consider, eliminating both convection 

and consumption from our problem. Using the “extracting the poison tooth” method, we were able to 

derive a solution that contained Bessel functions of both the first and second kind. Comparing our 

simplified analytical solution with our numerical method, we find that the solutions are not exactly the 

same. However, the two solutions do show similar behavior, both of which are distinctly different from 

the solutions that consider convection and/or consumption. 

Due the numerous assumptions that were made in solving the problem, the simplification of the hepatic 

lobule used to model the ethanol concentration during first-pass metabolism do not reflect real 

physiological conditions. In order to create a representative model of the complexity of metabolism in 

the hepatic lobule, more complex parameters and equations must be included. However, this may still 

lead to a numerical solution rather than the full analytical solution. 
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Extraction of the “poison tooth” 
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Solving for the steady state solution: 
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Plugging in general boundary conditions gives us 
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From this point on, C =             , with homogeneous boundary conditions 
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_____________________________________________________________________________________ 

To satisfy boundary conditions, the eigenmode is equivalent to 

  (  )    (  ) (   )    (   )  (  ) 

because      at      and      given that   is a root of the following equation [Carslaw and 

Jaeger]: 
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Given orthogonality relationships of Bessel functions of the First and Second kind 
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Which are found by the following known relationships from Craslow and Jaeger: 
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Setting the initial condition as a Fourier Bessel-series expansion, 

 ( )       (   )      (   )     

Integrating both sides from    to    and multiplying by r and   , assuming each term can be integrated 

individually, we simplify to get the following: 
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Plugging in    into the homogeneous boundary conditions of the general solution, we obtain: 
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Putting back the steady-state solution (insert back the “poison tooth”) 
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where       (    )    , we arrive at the final solution: 
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Appendix B – Matlab and Mathematica Code 

function project 
%%% BENG 221 Matthew Cai A08195697 

  
clear; 
close all 

  
%%% Project 

  
global C0 D R1 R2 T Km Vm v 
C0 = 0; %mM 
D = 1.23*10^-9; %mm^2/s %1.23*10^-9; %m^2/s 
R1 = 0.0001;%m (100 um) 
R2 = 0.00085;%m (850 um) 
T = 140; %sec 
Km = 4; %mM 
Vm = 0.5; %mM/s 
v = -0.00017; %m/s 

  
% solution using finite differences 
dx=(R2-R1)/100; 
dt=1/50; 
xmesh=R1:dx:R2; 
tmesh=0:dt:T; 
[x,t]=meshgrid(xmesh,tmesh); 
nx = length(xmesh); % number of points in x dimension 
nt = length(tmesh); % number of points in t dimension 
stepsize = D * dt / dx^2; % stepsize for numerical integration 
sol_fd = zeros(nt, nx); 
sol_fd(:,1)=sol_fd(:,1); %BC at R1 is value 0 
sol_fd(:,nx)=sol_fd(:,nx)+20; %BC at R2 is value 20 

  
%sol_fd(1, :) = (c0/2)*(1-cos(2*pi*xmesh/L)); % initial conditions; 

  
for t = 2:nt 
    for x = 2:nx-1 
           %Numerical solution with Convection and Consumption 
%          sol_fd(t,x) = sol_fd(t-1,x) + stepsize * ... 
%                 (sol_fd(t-1,x+1) - 2 * sol_fd(t-1, x) + sol_fd(t-1,x-1)) + 

... 
%                 stepsize/(2*x)*(sol_fd(t-1,x+1)-sol_fd(t-1,x-1)) - ... 
%                 v*dt/(2*dx)*(sol_fd(t-1,x+1)-sol_fd(t-1,x-1)) - ... 
%                 Vm*dt*sol_fd(t-1,x)/(Km+sol_fd(t-1,x)); 

  
           %Numerical solution without convection 
         sol_fd(t,x) = sol_fd(t-1,x) + stepsize * ... 
                (sol_fd(t-1,x+1) - 2 * sol_fd(t-1, x) + sol_fd(t-1,x-1)) + 

... 
                stepsize/(2*x)*(sol_fd(t-1,x+1)-sol_fd(t-1,x-1)) - ... 
                Vm*dt*sol_fd(t-1,x)/(Km+sol_fd(t-1,x)); 

          
           %Numerical Solution without convection or consumption 
%          sol_fd(t,x) = sol_fd(t-1,x) + stepsize * ... 
%                 (sol_fd(t-1,x+1) - 2 * sol_fd(t-1, x) + sol_fd(t-1,x-1)) + 

... 
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%                 stepsize/(2*x)*(sol_fd(t-1,x+1)-sol_fd(t-1,x-1)); 
    end 
end 

  
figure 
surf(xmesh,tmesh,sol_fd, 'EdgeColor', 'none') 
title('Finite differences') 
xlabel('r [m]') 
ylabel('t [sec]') 
zlabel('c(r,t) [mM]') 

  
c=xmesh; 
for n=1:length(xmesh) 
    c(n)=20*log(xmesh(n)/0.0001)/log(0.00085/0.0001); 
end 

  
fd_fun = sol_fd(nt,:); 

  
figure 
plot(xmesh,fd_fun,'*',xmesh,c,'+') 
title('Concentration Profile of Steady State Solutions') 
legend('Numerical soln with consumption and convection','Analytical soln 

without consumption and convection') 
xlabel('x [m]') 
ylabel('c(x) [mM]') 

  
[x,t]=meshgrid(xmesh,tmesh); 

  
figure 
f = analyticaltext(x,t); 
surf(x,t,f,'EdgeColor','none') 
title('Analytical Solution: No consumption or convection (8 roots)') 
axis([R1 R2 0 T 0 20]) 
xlabel('x [m]') 
ylabel('t [sec]') 
zlabel('conc [mM]') 

  
function [f] = analyticaltext(x,t) 
global C0 D R1 R2 

  
roots = [0.39993 0.82486 1.24694 1.66779 2.08799 2.50781 2.9274 3.34683]; 

%found from FindRoots in Mathematica with R1=1 and R2=8.5 
roots = 10000*roots; %convert for R1=0.0001 and R2=0.00085 

  
f=20.*log(x/R1)./log(R2/R1); 
for n=1:1:8 
   f = f + ... 
    (-(pi*20*besselj(0,R1*roots(n))^2/(besselj(0,R1*roots(n))^2-

besselj(0,R2*roots(n))^2)))... 
    .*(besselj(0,x.*roots(n))*bessely(0,R2*roots(n))-

besselj(0,R2*roots(n)).*bessely(0,x.*roots(n))).* exp(-D.*roots(n)^2.*t); 
%    f = f + ... 
%     

((pi*C0*besselj(0,R1*roots(n))/(besselj(0,R1*roots(n))+besselj(0,R2*roots(n))

))...    
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%     -(pi*20*besselj(0,R1*roots(n))^2/(besselj(0,R1*roots(n))^2-

besselj(0,R2*roots(n))^2)))... 
%     .*(besselj(0,x.*roots(n))*bessely(0,R2*roots(n))-

besselj(0,R2*roots(n)).*bessely(0,x.*roots(n))).* exp(-D.*roots(n)^2.*t); 

  
end 

 

Mathematica: 

a=1; 

b=8.5; 

N[FindRoot[BesselJ[0,a*x]*BesselY[0,b*x]-

BesselJ[0,b*x]*BesselY[0,a*x],{x,3.3}],10] 

 


